Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

СОГЛАСОВАНО	УТВЕРЖДАЮ
Заведующий кафедрой	Заведующий кафедрой
Кафедра композиционных	Кафедра композиционных
материалов и физико-химии	материалов и физико-химии
металлургических процессов	металлургических процессов
(КМФХамы от ф.) кафедры	наименование кафедры
	Шиманский А.Ф.
подпись, инициалы, фамилия	подпись, инициалы, фамилия
«» 20г.	«» 20_г.
институт, реализующий ОП ВО	институт, реализующий дисциплину

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОБЩЕТЕХНИЧЕСКИЙ МОДУЛЬ ФИЗИЧЕСКАЯ ХИМИЯ

Дисциплина	Б1.Б.03.27 ОБЩЕТЕХНИЧЕСКИЙ МОДУЛЬ		
	Физическая	химия	
Направление г		21.05.04 Горное дело специализация 21.05.04.00.06 Обогащение полезных	
Направленность (профиль)		ископаемих	
Форма обучен	ия	заочная	
Год набора		2015	

Красноярск 2021

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ

составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по укрупненной группе

210000 «ПРИКЛАДНАЯ ГЕОЛОГИЯ, ГОРНОЕ ДЕЛО, НЕФТЕГАЗОВОЕ ДЕЛО И ГЕОДЕЗИЯ»

Направление подготовки /специальность (профиль/специализация)

Специальность 21.05.04 Горное дело специализация 21.05.04.00.06

Обогащение полезных ископаемых

Программу составили

Канд. хим.наук, Доцент, Васильева М.Н.

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Обеспечить фундаментальную подготовку специалиста на основе овладения теоретическими основами физической химии - науки о закономерностях протекания химических процессов и химических явлений.

1.2 Задачи изучения дисциплины

Изучение теоретических основ классической термодинамики и способов применения термодинамических методов для решения проблем металлургического производства.

Овладение расчетными и экспериментальными методами анализа физико-химических процессов и навыками их использования для решения задач, связанных с производством и обработкой металлов и сплавов.

Основной задачей изучения дисциплины является формирование компетенций, необходимых в дальнейшей профессиональной деятельности выпускника.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

ОПК-4:готовностью с естественнонаучных позиций оценивать строение, химический и минеральный состав земной коры, морфологические особенности						
и генетическ	и генетические типы месторождений твердых полезных ископаемых при					
решении зада	ч по рациональному и комплексному освоению георесурсного					
потенциала н	педр					
Уровень 1	Знать основы химической термодинамики, химическое и фазовое					
	равновесие, законы растворов, термодинамику поверхностных					
	явлений					
Уровень 1	Уровень 1 Уметь применять законы физической химии для решения					
	практических задач					
Уровень 1	Уровень 1 Владеть навыками практического применения законов физической					
	химии					
ПК-16:готовн	ПК-16:готовностью выполнять экспериментальные и лабораторные					
исследования	исследования, интерпретировать полученные результаты, составлять и					
защищать от	защищать отчеты					
Уровень 1	Знать принципы использования термодинамического подхода для					
	описания физико-химических процессов					
Уровень 1	Уметь планировать и выполнять эксперименты по определению					
	тепловых эффектов химических процессов, свойств растворов,					

	констант равновесия химических реакций, построению диаграмм состояния; анализировать диаграммы фазовые равновесий
Уровень 1	Владеть методами выполнения физико-химических расчетов и
	моделирования химического и фазового равновесий, свойств
	растворов, а также проведения расчетов физико-химических величин

1.4 Место дисциплины (модуля) в структуре образовательной программы

Для изучения дисциплины «Физическая химия» студентам необходимо усвоить следующие базовые дисциплины:

- Химия:
- Физика:
- Математика.

Основная литература для восполнения знаний:

- 1. Коровин Н.В. Общая химия. Теория и задачи / Н.В. Коровин, Н.В. Кулешов, О.Н. Гончарук, В.К. Камышова. М.: Лань, 2014. 496 с.
- 2. Трофимова Т.И. Курс физики: учеб. пособие для вузов / Т.И. Трофимова. М.: Академия, 2010.
- 3. Кузоватов И.А., Математика. Специальные разделы: учебное посо-бие / И.А. Кузоватов, Н.В. Кузоватова. Красноярск: СФУ, 2011. 104 с.

Рассмотренный в курсе материал является базовым для изучения дисциплин профессионального цикла и способствует накоплению знаний в области физической химии, приобретению умений и навыков анализа процессов, протекающих в гомогенных и гетерогенных системах.

Математика

Физика

Химия

1.5 Особенности реализации дисциплины

Язык реализации дисциплины Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		Семестр
Вид учебной работы	Всего, зачетных единиц (акад.час)	6
Общая трудоемкость дисциплины	4 (144)	4 (144)
Контактная работа с преподавателем:	0,53 (19)	0,53 (19)
занятия лекционного типа	0,17 (6)	0,17 (6)
занятия семинарского типа		
в том числе: семинары		
практические занятия		
практикумы		
лабораторные работы	0,36 (13)	0,36 (13)
другие виды контактной работы		
в том числе: групповые консультации		
индивидуальные консультации		
иная внеаудиторная контактная работа:		
групповые занятия		
индивидуальные занятия		
Самостоятельная работа обучающихся:	3,22 (116)	3,22 (116)
изучение теоретического курса (ТО)		
расчетно-графические задания, задачи (РГЗ)		
реферат, эссе (Р)		
курсовое проектирование (КП)	Нет	Нет
курсовая работа (КР)	Нет	Нет
Промежуточная аттестация (Экзамен)	0,25 (9)	0,25 (9)

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

	, , , , , , , , , , , , , , , , , , ,	1	1			
				нтия кого типа		
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционн ого типа (акад.час)	Семинар ы и/или Практиче ские занятия (акад.час)	Лаборато рные работы и/или Практику мы (акад.час)	Самостоя тельная работа, (акад.час)	Формируемые компетенции
1	2	2	4	5	6	7
1	Химическая термодинамика. Химическое равновесия.	1,5	0	3	29	ОПК-4 ПК-16
2	Термодинамика фазовых превращений.	1,5	0	0 3		ОПК-4 ПК-16
3	Растворы.	1,5	0	4	29	ОПК-4 ПК-16
4	Поверхностные явления. Свойства дисперсных систем.	1,5	0	3	29	ОПК-4 ПК-16
Всего	•	6	0	13	116	

3.2 Занятия лекционного типа

			Объем в акад.ча	cax	
№ π/π	№ раздела дисциплин ы	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме

		Введение. Предмет и			
		составные части			
		физической химии.			
		Основные этапы			
		развития физической			
		химии как современной			
		теоретической основы			
		химии. Методы			
		термодинамики,			
		кинетики и квантовой			
		химии в описании			
		химических явлений.			
		Основные понятия,			
		законы и модели			
		термодинамики. Теплота и работа.			
		_			
		Внутренняя энергия. Первый закон			
		l =			
		термодинамики.			
		Применение первого			
		закона термодинамики к			
		процессам в идеальном			
		газе. Энтальпия. Закон			
		Г.И. Гесса. Зависимость			
		теплового эффекта			
		реакции от			
		температуры.			
		Уравнение Кирхгоффа.			
		Зависимость			
		теплоемкости от			
		температуры и расчеты			
		тепловых эффектов			
		реакций. Таблицы			
		стандартных			
		термодинамических			
		величин и их			
		использование в			
		термодинамических			
		расчетах			
		Второй закон			
		термодинамики.			
		Энтропия. Обратимые и			
		необратимые			
		термодинамические			
		процессы. Уравнение			
		второго начала			
		термодинамики для			
		обратимых и			
		необратимых			
		процессов. Изменение			
1	1	энтропии в	1,5	0	0
		изолированной системе			
		изолированной системе 7 – критерий направления			
		самопроизвольного			
		процесса. Вычисление			
		изменения энтропии в			

различных процессах

2	2	Вывод и анализ уравнения Клапейрона-Клаузиуса. Фазовые переходы первого и второго рода. Диаграммы состояния. Способы построения диаграмм состояния. Принцип непрерывности и принцип соответствия. Правило фаз Гиббса. Диаграммы состояния однокомпонентных систем. Полиморфизм. Аллотропия. Энантиотропные и монотропные фазовые переходы. Диаграммы состояния двухкомпонентных систем. Анализ диаграмм состояния. Правило Рычага. Построение кривых охлаждения.	1,5	0	0
---	---	--	-----	---	---

3	3	Общая характеристика и классификация растворов. Формы выражения состава растворов. Интегральные и парциальные молярные свойства растворов. Химический потенциал, связь с составом и температурой. Идеальные растворы. Разбавленные растворы. Законы Рауля, Сивертса, Генри. Закон распределения вещества между двумя несмешивающимися фазами. Криоскопия и эбуллиоскопия. Реальные растворы. Термодинамическая активность компонента в реальном растворе. Коэффициент термодинамической активности. Отклонения от закона Рауля в поведении реальных растворов.	1,5	0	0
---	---	--	-----	---	---

их классификация. Поверхностное натяжение, зависимость от природы веществ, температуры и состава. Уравнения Лапласа и Томсона-Кельвина, анализ и применение. Смачивание и капиллярные явления, адгезия и когезия. Адсорбция. Влияние температуры на адсорбцию. Адсорбция в системе твердое тело- газ. Уравнения Фрейндлиха и Ленгмюра. Особенности адсорбции в системе твердое тело-жидкость. Адсорбция в системе жидкость-газ. Уравнение Гиббса. Поверхностно-активные и поверхностно- инактивные вещества. Влияние поверхностно- активных веществ на технологические свойства систем.	1,5	0	0
---	-----	---	---

3.3 Занятия семинарского типа

	№			Объем в акад. часах		
No	раздела	Наименование занятий		в том числе, в инновационной	в том числе,	
п/п	дисципл ины		Всего	форме	электронной	
	ипы				форме	
Page						

3.4 Лабораторные занятия

	3.0		Объем в акад.часах		
№ п/п	№ раздела дисципл ины	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме

1	1	Калориметрическое определение теплоты растворения солей Калориметрическое определение теплоты нейтрализации сильных электролитов. Исследование химического равновесия гомогенной реакции в растворе.	3	0	0
2	2	Построение диаграммы фазового равновесия двухкомпонентной системы в конденсированном состоянии. Определение давления насыщенного пара жидкости по температуре кипения.	3	0	0
3	3	Криоскопический метод определения молекулярной массы неэлектролита и степени диссоциации электролита. Определение коэффициента распределения.	4	0	0
4	4	Определение поверхностного натяжения жидкости. Определение адсорбции уксусной кислоты углем Получение и коагуляция коллоидных растворов.	3	0	0
Page		12	Λ	Ω	

5 Фонд оценочных средств для проведения промежуточной аттестации

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

6.1. Основная литература					
	Авторы,	Заглавие	Издательство,		
	составители		год		
Л1.1	Стромберг А. Г.,	Физическая химия: учебник для	Москва: Высшая		
	Семченко Д. П.	студентов вузов, обуч. по химич. спец.	школа, 2006		

Л1.2	Кудряшева Н.С., Бондарева Л. Г.	Физическая химия: учебник для бакалавров	Москва: Юрайт, 2012
Л1.3	Кудряшева Н.С.,	Физическая химия: учебник	М.: Юрайт, 2014
711.5	Бондарева Л.Г.	Физическая химия. учесник	М.: Юраит, 2014
		6.2. Дополнительная литература	
	Авторы,	Заглавие	Издательство,
	составители		год
Л2.1	Эткинс П. У.,	Физическая химия: Ч. 1. Равновесная	Москва: Мир,
	Паула Д. д.,	термодинамика: в 3 частях : перевод с	2007
	Лунин В. В.,	английского	
	Полторак О. М.		
Л2.2	Шиманский А.	Физикохимия неорганических	Красноярск:
	Ф., Белоусова Н.	материалов: учебно-методический	СФУ, 2009
	В., Васильева М.	комплекс дисциплины (№ 1825/69-2008)	
	Н., Шубин А. А.,		
	Симонова Н. С.,		
	Якимов И. С.,		
	Бычков П. С.		1
Л2.3	Кнотько А. В.,	Химия твердого тела: учебное пособие	Москва, 2006
	Пресняков И. А.,	по специальности 020101 (011000)	
	Третьяков Ю. Д.	"Химия"	
Л2.4	Грызунов В.И.,	Физическая химия: учебное пособие	Москва: Флинта,
	Кузеев И.Р.,		2014
	Пояркова Е.В.,		
	Полухина В.И.,		
	Шабловская Е.Б.,		
	Приймак Е.Ю.,		
H2.5	Фирсова Н.В.	*	2.6
Л2.5	Бокштейн Б. С.,	Физическая химия: термодинамика и	Москва:
	Менделев М. И.,	кинетика: учебник	МИСиС, 2012
	Похвиснев Ю. В.		
	T .	6.3. Методические разработки	
	Авторы,	Заглавие	Издательство,
П2 1	составители		год
Л3.1	Гильдебрандт Э.	Физическая химия: методические	Красноярск:
	М., Болдина Л.	указания к лабораторным работам	Информационно-
	Г., Васильева М.		полиграфически
	H.		й комплекс [ИПК] СФУ, 2009
пээ	[Fvvvv vo 6]	Фурууу 2010 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Л3.2	Гильдебрандт Э.	Физическая химия: метод. указ. к лаб.	Красноярск:
по	М., Болдина Л. Г.	работам для студентов всех спец.	ГУЦМи3, 2006
Л3.3	Гильдебрандт Э.	Физическая химия: метод. указ. к лаб.	Красноярск:
	М., Болдина Л. Г.	работам для студентов всех спец.	ГУЦМи3, 2004
Л3.4	Гильдебрандт Э.	Физическая и коллоидная химия:	Красноярск:
	М., Белоусова Н.	Методическое пособие для заочников:	ГАЦМи3, 2002
	B.	утверждено Редакционно-издательским	
		советом академии в качестве учебного	
		пособия	

Л3.5	Кудряшева Н. С., Немцева Е. В., Кратасюк В. А., Есимбекова Е. Н., Бондарева Л. Г., Гавричков В. А., Выдрякова Г. А., Свидерская И. В.	Физическая химия: электронный учебнометодический комплекс по дисциплине (№ 144-2007)	Красноярск: СФУ, 2009
Л3.6	Васильева М. Н., Симонова Н. С.	Физическая химия: учебметод. пособие для самостоят. работы [для студентов спец. 150701.65 «Физикохимия процессов и материалов», 150108.65 «Порошковая металлургия, композиционные материалы, покрытия», напр. 150400 «Металлургия» и 150100 «Материаловедение и технологии материалов»]	Красноярск: СФУ, 2012

8 Методические указания для обучающихся по освоению дисциплины (модуля)

Самостоятельное изучение теоретического материала по курсу «Физическая химия» планируется с целью домашней проработки, как лекционного материала, так и информации, полученной студентами при работе с рекомендуемой литературой по разделам, не нашедшим достаточного отражения в лекциях.

Для самостоятельной проработки теоретического материала рекомендуется использовать учебные пособия, приведенные в разделе 6 учебной программы, по разделам, соответствующим пройденному лекционному материалу. При самостоятельной работе с литературой студенту рекомендуется составить конспект, в котором он, по желанию, может отразить основные сведения по теме, изучаемой самостоятельно.

Самостоятельная работа студентов ставит целью расширение и закрепление знаний и умений, получаемых на лекциях и лабораторных занятиях. В этом случае наиболее эффективными будут следующие формы проведения СРС:

- систематическое чтение и конспектирование литературы по вопросам изучаемой дисциплины;
- подготовка к лабораторным занятиям и промежуточному контролю знаний;
- самостоятельное углубленное изучение узловых вопросов учебной программы, недостаточно освещенных в лекционном курсе;
 - подготовка студентов к экзамену (зачету).

- 9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)
 - 9.1 Перечень необходимого программного обеспечения
- 9.1.1 Нет.
 - 9.2 Перечень необходимых информационных справочных систем
- 9.2.1 Большой химический справочник [Текст] / А. И. Волков, И. М. Жарский. Минск: Современная школа, 2005. 603 с. http://lib3.sfu-kras.ru/ft/lib2/elib/u54/i -556695.pdf

10 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Кафедра материально-технической базой, обеспечивающей располагает проведение всех видов деятельности в процессе изучения дисциплины «Физическая соответствует требованиям государственного химия», образовательного стандарта подготовки специалистов по направлению 21.05.04 «Горное дело».